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m  HDS and DRS has been incrementally developed and operated for 3.5

yrs by 20+ persons (if counting guys in my lab only)
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TDS Software Stack

Hive, Spark HTTP Request
HTTP Server
_|
HDFS Load ?D
Interface oa Authorization Connection M )
L appin

Balancer limits PRINg < 3

T &

: * 2 | |2

Lock Manager S

«Q

: * Task Manager @

Transfer

<FTP » FILE » LOCAL s HTTP » SMB » HDFS » HDS> External
Database
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Software Stack: Everything Together
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Usage Patterns

RESTful Request

E.g., FDC data e ____|| ____|| ____|| — — — — ——
“c\ @ Pipeline data tran‘sfér (st?e{ammh) . _1. : £ i] 3_ i] 3. i ;.
o G- ;'i;_a; jok ;':* AR Ll sl sl
4 "‘“ SMB Server gL 0V 1 £ | A gL Y ‘
FTP Server & A R A A | @llntelllgent datafplacement
é % U, HBase
(O]
<E S
N L HDFS




Usage Patterns (cont’d)

SMB Sery

|'!|:|J-“; |"i b |'r'§ ! I!-I|J"§ :'!;:|--r’§ -'!lll-l-'é FTP Servg
Wt - : "y i J e

ﬁ § ABase |

|| =

3 HDFS

SMB Server
FTP Server

SMB Server
FTP Server



TDS RESTful APlIs

m Same APIs in HDS Ver. 1.0 and 2.0

watch
kill

e access e addmapping
 list  listmapping
 delete e deletemapping
 pbatchdelete  loading
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Load Balancing
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* Balance loads among HDS servers
Dynamically and evenly dispatch data transfer requests to HDS servers
On-line probabilistic algorithm: gather loads of servers, and then reallocate requests

H.-C. Hsiao and C.-W. Chang. A Symmetric Load Balanc- H.-C. Hsiao. H.-Y. Chung. H. Shen. and Y.-C. Chao.

ing Algorithm with Performance Guarantees for Distributed Load Rebalancing for Distributed File Systems in Clouds.
Hash Tables. JEEE Transactions on Computers. 62(4):662— IEEE Transactions on Parallel and Distributed Svstems.,
675, Apr. 2013. 24(5):951-962. May 2013.
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Lock Service based Sequential Consistency Memory Model
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HTTP Server
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' : - Load c 3

2 HBase \1 Balancer g
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Task Manager

Transfer

<FTP : FILE - LOCAL + HTTP - SMB - HDFS » HDS>

e Serialize concurrent “read” and “write” operations for an HDS data object

e ZooKeeper: replicated databases based on sequential memory consistency model
Reads are through local replica

Muti-Paxos writes: serialize write operations to all replicas

e Our locking service:

User 1: Lock Acquire Arrived User 2: Lock Acquire Arrived Curient time

Replica DB,

User 1: Lock Grant? No! User 1: Lock Grant? Yes! I User 2: Lock Acquire Arrived

User 1: Lock Acquire Arrived
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Transparency by Mixing HDFS and HBase
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- Interface Load c Mappi
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. . \\ <FTP : FILE + LOCAL + HTTP - SMB - HDFS - HDS>

& | pr X5 3 § % (100,000x) -|- *+10 Kbytes =4 ;&ﬁl 41 Z 33 ¥|Hadoop
Hadoop HDFS— & inode+ -] 1150 bytes » B :
#namenode Z & ffiinode 3 F ¥.x*100,000%150 = 15x Mbytes
% 15x * 24 = 360x Mbytes
7 2 360x * 30 = 10.8x Gbytes
# 7 10.8x *365 = 3.942x Thytes
iNodes are cached in memory
e Our solution: store small data objects in Hbase (Hadoop distributed database storage engine)
Mutiple small data objects (< 10 Mbytes) are stored in HDFS as a single file, i.e., Hfile (> 64 MBytes);
store in HDFS, otherwise
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In Compliance with HDFS Interfaces,
and Seamless Integrated with Hadoop Ecosystem
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e Compliance with HDFS APIs il
Append, create, delete, '
getFileStatus, getUri,
getWorkingDirectory, listStatus,
mkdirs, open, rename,
setWorkingDirectory, getScheme,
initialize,..

* Directory name space

With HBase to handle directory operations

e.g., Hive directory operations
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Compliance with HDFS Interfaces, and thus Hadoop Ecosystem
19
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Service differentiation: long (e.g., copy) and short (e.g., 1 1st and de l ete) RESTful tasks, each
with its dedicated connection pool

Role-based authorization

Storage protocols and pipeline streaming: FTP, FILE, LOCAL, HTTP, SMB, HDFS, and HDS, currently
TinyURL mapping

Performance metrics: time elapsed/phase and resources for handling a request




Apache HBase Client Side Enhancement
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e Write: update, insert and delete (major traffic to HBase) g

filter

candiates w

partitions

map: regions allocated to region servers

m: maximal number of connections issued by a client _—

n: maximal number of connections accepted — onnections
by a region server naastes QI@ o

t: maximal duration (or timeout) of a connection o

*  Problem: —

for each client within a time window w, o <

maximize number of successful requests i ‘m parttions

e Contribute to Apache HBase 1.3 and 2.0 _—
Improvements: 20% latency reduction on average per request, using 50% of connections
Implications: 50% free connections for short messages such as read

.




Scalability and Fault Tolerance

Load
Balancer

Authorization QUIeEon Mapping

']
Lock Manager

Task Manager

Transfer
<FTP : FILE  LOCAL + HTTP - SMB - HDFS - HDS>

. Jabbon aseyd awi)

Each HDS server learns HDS membership on-the-fly
Read-dominant workload

Membership information need not be precise and up-to-date
Based on ZooKeeper
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Al 5L ¢ Supermicro X80BN Hadoop 2.6.0-cdh5.10.0

CPU : Intel Xeon E7-8850 @2GHz HBase 1.2.0-cdh5.10.0
2B %8 : 512GB ZooKeeper 3.4.5-cdh5.10.0

>

>

>

> M7 750GB * 16 Yarn 2.6.0-cdh5.10.0
Ji
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Hive 1.1.0-cdh5.10.0
e (165 2L)

» CPU : 80 x 2GHz

> eiifd : 32GB

» H 7kt 750GB

Benchmark in our development environment, avoiding to introduce extra workloads
and traffics to production systems

ele




23

Performance Results
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Related Works

m SquenceFile and Hadoop archives: Pack small files into a large one

> How about metadata, HDFS interface, etc.?

m WebHDFS and httpFS: HDFS extension over HTTP
» Cannot resolve the namenode metadata issue

m Apache Sqoop: from DB tables to Hadoop
> Not for non-DB storages

®m Flume and Kafka
> FIFO data streams+Pub/Sub

24
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Distributed R/Pythin Computing Service (DPS)

e Observations:

26
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DPS: A Quick Overview
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DPS: A Quick Overview (cont’d)

o ABEMEATHFERR ZRRSEHRI %= 2T ¥ B~ with TDS

e Features:

e Batch input: a set of data objects in HDS
Fault tolerance: tolerate hardware/software faults while lasting computation
Scalability: scale if resources are available

Efficient resource management: memory
monitoring/allocation/deallocation/sharing among tasks and among jobs

e Not real-time currently, and for big job only
e Bigjob can tolerate startup cost while real-time small job cannot

e Akin to Hadoop MR framework

e Job: AM, NM’s (containers), heart beat among AM and containers, tasks
scheduling

28



Internal Workflow
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s # —"ZE & B (The Case of R programs)

Configuration:

http://host/hds/v1/run?code="..."&data="..."&config="..."&codeout="..."&consoleto =“...“ //fork a DRS job
code = ... //R program path

data = ... //input data file, containing a list of paths of data files

container_spec = ... //specification for a set of containers

codeout = ... /laggregation of output data files for R programs running in each container

consoleto = ... //R program console output

R program body:
tempData <-read.csv(DRS_INPUT_FILE_PATH , header = TRUE) //read data files locally
data <- ...(tempData) //filter and load data

sumResult <- sum(data) //compute sum
sdResult <- sd(data) //compute standard deviation
medianResult <- median(data) //find median
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YARN Hierarchical Queue
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In a Job,...

Application master (AM) performs to:

> Gather and maintain a list of tasks and a set of resources
e Pertask info: file size, locations, ...
e Per container info: CPU cores, memory, ...

> Match tasks and containers (task scheduling issue)
e E.g, largest task first and random assignment

Dispatch tasks to containers

Monitor and gather tasks execution status for performance and failure recovery
Even vary resource spec. on-the-fly

Overlap scheduling with container computation

Y V VY V

“Per” container performs:

> To wait for notification of task assignment
> Then to fetch task data and compute
> To return AM computation status

33



Jobs Heterogeneity
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Solution Architecture

Multiple Queues:

characterized by task

> attributes (file size)

Resource pool:

grouped by comp. quantity
(mem space) per container

Matchmaker:

* learn on the fly by
measuring 1 ¥ = 5 & %
TR

* matching rule
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A Bit Detailed

m Matching rule:
(container pool, task queue)

m Repeat:
Step 1: For each “given” pool, observe T ik & * & 2 1 i% = 5 5 per task
Step 2: Update matching rule (e.g., attribute of a task queue) due to task migration

. A
> Multiple-Server-Multiple-Queue (M/G/k model)
> Service differentiation

39
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Refine attributes of a given resource pool in association rule

E.g., total mem. space in Pool A increased from 16 GB to 32 GB
Number of containers in Pool A increases from 8 to 16 (assuming 2GB mem. assigned to each

>
>

container in Pool A)
> Consequently, parallelism is exploited, thus reducing job execution time

Note: Some pool3¥ +c F ik % 77 some other pool$# ! 7 ik
> E.g., some pool B releases 16 GB of mem. space by killing 4 containers each with 4 GB mem

Proportional allocation (&t 784 :& 3 ix 73 friqueues) for faireness:
For each queue Q with tasks, compute:
W(Q) = Queue Length(Q) x Per Task Exec. Time Expected(Q)

Allocate resources < W (Q) to Q

>

>
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Stress Test (X 7%= # )
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Interplay of DPS and TDS

45
DPS enjoys TDS: Per DPS container
allocates data through TDS
B K
DPS not only helps R/Python D e
. . Computing Service
analytic programs to execute in a

Transparent

distributed, scalable platform, but Hadoop Data

Serice

allows the analytic programs to
access data without sophisticated
Hadoop knowledge

SR NS T R

Both compute and storage are
transparent to analytic users
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Summary and Outlook

46
m  TDS is used in a semiconductor manufacturing foundry for 3.5 yrs

> TDSPEF%: (k+1)-th storage: Hadoop (HDFS+HBase) + catalog

> Features: Load balancing, synchronization based on sequential memory
consistency model, intelligent and transparent data placement, compliance
with HDFS interface and thus Hadoop ecosystem, pipelined and distributed
data streaming, scalable and fault tolerant

» ¥2HBasex # for easy administration

m DPS: Distributed R/Python computing service over TDS
m  Contribute back to Apache Open Source community

m  Ongoing: TDS and DPS in a low-end server box and/for streaming data

%



Reference

IEEE Big Data Conference
2018: IEEE 1st-tier conf. on
big data, regular paper in

the main track (100
accepted among 570
submissions, and 1100
participants), industry
session

21018 [EEE Intemational Conference on Big Data (Big Data)

Bridging the Gap between Big Data System Software
Stack and Applications: The Case of Semiconductor
Wafer Fabrication Foundries

Chia-Ping Tsai*", Hung-Chang Hsiao™ %, Yu-Chang Chac!, Michael Hsu® and Andy RK Chang*
*Apache HBase Committer and Project Management Committee (PMC)

"Department of Computer Science and Information Engineering, Mational Cheng Kung University, Tainan 701, Taiwan
Division of Intelligent Manufacturing Service and System, Information and Communication Research Laboratories,
Industrial Technology Research Institute South Campus, Tainan 709, Taiwan
“Information Technology Division, United Microelectronics Corporation, Taiwan
YE-mail: hehsiaogcsie. noku. adu. tw

Abstract—We present in this paper two novel i

waler foundries have embraced

services bascd on Hadoop for big data storage and computing in a
Taiwan’s semiconductor wafer fabrication foundry. The two services
include Hadoop data service (HDS) and distributed R language
computing service (DRS), which have been built and operated
in production systems for 3.5 years. They evolve over time by
ing users’ requi . HDS is a wel
based distributed big data storage fucility, Users simply rely on Hl
to access data objects stored in Hadoop with the HTTP protocol. In
addition, HDS is scalable and reliable. Moreover, HDS is efficient
and effective by intelligently selecting either Hadoop distributed file
system (HDFS) or database (HBase) for publishing data objects.
ally, HDS is transparent to existing analytics and data inquiry
applications, such as Spark and Hive. While HDS is 2 unified storage
for supporting sequential and random data accesses for big data
in the wafer fabrication foundry, DRS is a distributed computing
framework for l‘_ﬂ)lcl.l R ]angugt users. R users employ DRS to
cnjoy data-p effortlessly and Similar
to HDS, DRS can be horizantally scaled out. It guarantees the
completion of computational jobs even with fuilures. In particular, it
Tesources on the fiy,
job execution time and It of allocared
This paper discusses the design and implementation features for HDS
and DRS. It also demonstrates their performance metrics,

Keywords: Hadoop, Big data storage, R language computing
platform, Services computing

[ INTRODUCTION

Semiconductor f ing is a high-end technology indus-
try that not enly improves its manufacturing technology over time
but also relies on state-of-the-art information Tor pro-
duetion tom. In the i 1or ing indusiry,

data volume increases cxponentially during the manufacturing
process, which greatly helps in monitoring and improving pro-
duction quality. To accommeodate excess data, Apache Hadoop [1]
is often adopted. Hadoop is essentially a computing and storage
facility for big data, That is, generated data are stored in Hadoop
and then analyzed in a bateh and/or real-time manner. Hadoop has
been developed and used for a decade and iis ecosysiem remains
PrOSPETOUS

* Hunp-Chang Hsio was partislly
Research € cl"c—' (IMRC) from Th

pported by the Inellsgent Manufacturing
tred Aseas Research Cester Prograe
ucation Sprout Project by the Minisay

of Edazation {MOE) in Taiwan,

978-1-5386-5035-618/531.00 ©2018 IEEE 1864

Hadoop for big data applications, including fmult derection and
classification (FDC) and vield analysis (YA). We discuss in this
paper twe underlying infrastructural services, namely, Hadoop
data service (1IDS) and distributed R language computing service
(DRS), based on Hadoop for a semiconductor manufacturing
foundry in Taiwan, HDS and DRS have been designed, imple-
ted, and operated for 5.5 years as of this paper's wriling
ce 2015 Roth HDS and DRS are 7 x ?-4 aperational services
in prody systems h ify . HDS and DES are
d.rwloped I meet the Io]]uu'm.g Tequirements:

« Transparency: Users are likely fo access data objects stored
in  big deta sysiem by wsing existing wols with which
they are familiar, p g the red of productivity
due to the lengthy learning curve of users. F‘m(.._u]arly, for
accessing data objects in Hadoop, an essential step for users
is to realize the architecture of Apache Hadoop distributed
Sile systems (HDFS) and the practice of HDFS APIs [2],
[3], [4]. Users need to be familiar with these APIs so
they can fully utilize HDFS, thus maximizing e HDFS's
performance. In addition, users have w be well trained w
manipulate distributed databases in Hadoop (e, Apache
FHBase [5), [6], [7]). Moreover, existing applications require
sophisticated efforts to migrate to Hadoop. Users have been
familiar with traditional statistical and'or machine learning
analvtics tools such as R [8] and Python [5]. Spectfically,
earlier developments based on these enalytical tools have
heen associated with production systems for quite some
time. An unlikely approach is to remnvent the wheel o
embrace novel technologies such as Hadoop. Thus, the use of
existng efforts and experiences as a basis to transparently
leverage emerging solutions has become a critical design
consideration.

. Autonomy: Big data storage and computation technologies
are typically based on a server farm (or a cluster of com-
modity off-the-shelf servers). By an “off-the-shelf server”
we mean 2 normal storage and computation device that
15 equipped with abundant computational resources (e.g.,
processor cycles, mam memory, and secondary hard drive
spaces) and software stack (eg., Linux operating system,
Java virtual machine, and Hadoop) available in the public do-
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SQL Loader

m  Objective: Provide SQL over Hadoop for analytic users

m SQL loader
> Load data stored in relational DBs into Hadoop (Phoenix/HBase)

m Features:
> Multithreading (single machine) and MapReduce (cluster) versions
> Incremental and fault tolerant
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TDS- and DPS-Lite in a Server Box and/or for Streaming

49

m  TDS and DPS server appliance

> Lite server (1 server) vs cluster farm (e.g., 30 servers)

m Support for streaming

> Data continuously generated over time
> TDS streams data to Hadoop
> DPS computes streaming data






HDES Architecture

@ File is partitioned to fixed-size
chunks

@ Namenode manages a centralized
directory for accesses like create,
delete, append, etc.

@ Could have a backup standby

@ Datanode stores file chunks
@ Datanodes may fail arbitrarily,
and be added dynamically
@ Scale: x10.000
@ Both namenode and datanode are
capable of computation and
storage (e.g., servers)

{foo/sys.log
fuser/ john/o.c

c
namenode

sk
LA

datanode

client
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HDFS

HDFS Architecture

Metadata (Name, replicas, ...):
/home/foo/data, 3, ...

Block ops

Read Datanodes
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What is HBase? (cont’d)

m Take advantages of
commodity
components
(physical servers or
VMs)

m Features:

> Scalability
> Availability
> Reliability

SQL Interface

HBase Clients

'.' RPC

Region Servers

HDFS Client (APIs)

,., transfer

Data Nodes

Operating System

On-disk File System

Disk Disk
Driver Driver

Component stacks

Disk
Driver
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Overview (3/4): HBase Table

Family 1 amily
row A
row B
row C NULL?

row A column A: column D:
double varchar
row B column B:
int wvalue
row C column C:
long int




Table-Logical View

Architecture (2/7): Table and Region

—’[ Keys:[A-F) ]

[ Region Server l\

[ Region Server 2\

’[ Keys:[F-K) ]

[ Region Server 3\

—’[ Keys:[P-U) ]

- J

D[ Keys[U-2) ]
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J

’[ Keys:[K-P) ]
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Architecture (3/7): HRegionServer, HMaster and Zookeeper

Client — Zookeeper HMaster

HRegion

HRegion

HBase

HDFS
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‘Architecture (5/7): HLog, MemStore and HFile
= | ]

MemStore Store
m o . .
Sync()
e
rollWriter() HLog

—— 5 |
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