Big Data Infrastructure Technologies for
Semiconductor Wafer Fabrication Foundries

Hung-Chang Hsiao (# % &)
Professor
Computer Science and Information Engineering
National Cheng Kung University

Outline
m RREZ R

m & * Open Source R % * F| £ F77" s SL LA K W PRTE

> Hadoop Data Service (TDS)
> Distributed R/Python Computing Service (DPS)

m Status

Outline

JEREEE

m iF* Open Source 3 < A A $755 % S A A ;K W IRIE

> Hadoop Data Service (HDS or TDS)
» Distributed R/Python Computing Service (DRS or DPS)

m Status

Providing E € F#.-T & to End Users...

T L R T R

v v

HBase

I TTTTITH

SN

5

Resource Managemeg
Storage

S NE Y B E s b

RE (BT R)

B AL PrHgenid ‘Fh{
> B % 4p R 3 ¢ v 4oSamba, FTP, Oracle, Microsoft SQL server » 12
2 3T & 78 crHadoop 7R B 2 AR Rk L.
> TR dpREstorageh 2 FHEE AR FTAL > H 2 A ETL
(extract, transform and load)
> E¥d Al 2 E R R P AH g HTFE LSRG e 2
T

Bog (T 5 PRIAR B8 F IR

n F e K

>

- 2h— 2
f:"f 3| 38 e L BT ek ;
iﬁ 5%ii$“ By R e o F AR 2R
SR TR & RS P
ﬁﬁ 2 EY P ATE R R
TH - - Fr TR EA
£

%fr%-y,b ifbfﬁr’#q- L AeiE om 2

~=

|
3?’9 f'*-ﬁ’f@'}?*&ﬁ' e NN ‘
' %"P A 37 AR N o e A AR R LD #T
"‘ N = i L < AN E
;m ‘@\Egrgﬁi‘f-‘ku jé.__.[' o2l E," by ml L A% .
G B DR Mk s

ZRI-ERFARBRERT XN HN

Transparency
. Autonomy .

Eﬁrciency

@9 @9
A ti\

P F

ele

Joint Research by Semiconductor Wafer Fabrication Foundry

and = + T

Comp

Distributed R/Python
Computing Service

SQL

Phoenix

AR
ransparent
Hadoop Data

Resource Magpagemegy

HBase

*

Storage

o
5
o

»

5 e B IE G TR, R

_ NNNREENN

Y iRV E o

m HDS and DRS has been incrementally developed and operated for 3.5

yrs by 20+ persons (if counting guys in my lab only)

= WithHDS and DRS, B & ¥

> n%+~%:%ﬁi B ASEIF T 1% S N B R
JE2~33E "% 15 i
> R 42 R T

o 1‘?@_

” *«’E%

£
Bty

m %

> Apache HBase committer and PMC

-1

i

TDS Software Stack

Hive, Spark HTTP Request
HTTP Server
_|
HDFS Load ?D
Interface oa Authorization Connection M)
L appin

Balancer limits PRINg < 3

T &

: * 2 | |2

Lock Manager S

«Q

: * Task Manager @

Transfer

<FTP » FILE » LOCAL s HTTP » SMB » HDFS » HDS> External
Database

10

Software Stack: Everything Together

11

0 (o W (my (my jmp mp [
I i i Ji b I I b
= v j S j " J = . j | g } ' I i : '
| '.lii } ;!i } ;l | '.lii ! il | '.lii | '.lii] '..I.I
f il f il Ik f i f_ il f il i § i f R Hive, Spark HTTP Request
SR Pttt e
o HTTP Server
Z|| 2 3
o HDFS Load Connection %
D: 8 Interface Balanger Authorization limits Mapping = z
[2
v 5 B
<|| & I ; gl |8
>— O | Lock Manager | Q
N ¥ ¥ a
Transfer Task Manager]
<FTP : FILE - LOCAL - HTTP - SMB - HDFS - HDS> External
Database

Usage Patterns

RESTful Request

E.g., FDC data e ____|| ____|| ____|| — — — — ——
“c\ @ Pipeline data tran‘sfér (st?e{ammh) . _1. : £ i] 3_ i] 3. i ;.
o G- ;'i;_a; jok ;':* AR Ll sl sl
4 "‘“ SMB Server gL 0V 1 £ | A gL Y ‘
FTP Server & A R A A | @llntelllgent datafplacement
é % U, HBase
(O]
<E S
N L HDFS

Usage Patterns (cont’d)

SMB Sery

|'!|:|J-“; |"i b |'r'§ ! I!-I|J"§ :'!;:|--r’§ -'!lll-l-'é FTP Servg
Wt - : "y i J e

ﬁ § ABase |

|| =

3 HDFS

SMB Server
FTP Server

SMB Server
FTP Server

TDS RESTful APlIs

m Same APIs in HDS Ver. 1.0 and 2.0

watch
kill

e access e addmapping
 list listmapping
 delete e deletemapping
 pbatchdelete loading

14

Load Balancing

S > = [E= = = = B E= T e [
@nn ® B ‘{_ § . EE] . i I i i 1 (] (1] Hive, Spark HTTP Request
o SMBSB;,Q, R O - T T (T R S — e J——
FTP Server |~ © Y ,l I L 1 .l R T R & HTTP Server
i [E[E] e i oy ST ot ST R S
1 i il i iR it # LK v HODFS
=& ——- N = S e)| interface Load c Mappi
@ BR-& 8 S _' ERLE ? = § HBase \ T Balancer limits PR ES
£ SMBSewe-r L L]_ > II 2 N . q
FTP Server | 3 HDFS [Lock Manag | !
B . 1) .
m 2R-0 | I"{, “d EEE Transfer Task
] —&i =~ .[I BB <FTP - FILE - LOCAL - HTTP - SMB - HDFS - HDS>
B sMB se S |
FTP Serr:f: EE -

* Balance loads among HDS servers
Dynamically and evenly dispatch data transfer requests to HDS servers
On-line probabilistic algorithm: gather loads of servers, and then reallocate requests

H.-C. Hsiao and C.-W. Chang. A Symmetric Load Balanc- H.-C. Hsiao. H.-Y. Chung. H. Shen. and Y.-C. Chao.

ing Algorithm with Performance Guarantees for Distributed Load Rebalancing for Distributed File Systems in Clouds.
Hash Tables. JEEE Transactions on Computers. 62(4):662— IEEE Transactions on Parallel and Distributed Svstems.,
675, Apr. 2013. 24(5):951-962. May 2013.

ol

Lock Service based Sequential Consistency Memory Model

16

HTTP Server

} =

' : - Load c 3

2 HBase \1 Balancer g

< b g
E HDFS g

(-]

Task Manager

Transfer

<FTP : FILE - LOCAL + HTTP - SMB - HDFS » HDS>

e Serialize concurrent “read” and “write” operations for an HDS data object

e ZooKeeper: replicated databases based on sequential memory consistency model
Reads are through local replica

Muti-Paxos writes: serialize write operations to all replicas

e Our locking service:

User 1: Lock Acquire Arrived User 2: Lock Acquire Arrived Curient time

Replica DB,

User 1: Lock Grant? No! User 1: Lock Grant? Yes! I User 2: Lock Acquire Arrived

User 1: Lock Acquire Arrived

ol

Transparency by Mixing HDFS and HBase

17

HTTP Server

- Interface Load c Mappi
: Balancer limits UL

SN

4 +
HDFS [Lock Manag |
¥ ¥ Task Manager

\ Transfer
. . \\ <FTP : FILE + LOCAL + HTTP - SMB - HDFS - HDS>

& | pr X5 3 § % (100,000x) -|- *+10 Kbytes =4 ;&ﬁl 41 Z 33 ¥|Hadoop
Hadoop HDFS— & inode+ -] 1150 bytes » B :
#namenode Z & ffiinode 3 F ¥.x*100,000%150 = 15x Mbytes
% 15x * 24 = 360x Mbytes
7 2 360x * 30 = 10.8x Gbytes
7 10.8x *365 = 3.942x Thytes
iNodes are cached in memory
e Our solution: store small data objects in Hbase (Hadoop distributed database storage engine)
Mutiple small data objects (< 10 Mbytes) are stored in HDFS as a single file, i.e., Hfile (> 64 MBytes);
store in HDFS, otherwise

ol

YARN | 2= =
Zookeeper B

A
—
P

B B bW
M

In Compliance with HDFS Interfaces,
and Seamless Integrated with Hadoop Ecosystem

18

- | e —
= - i -~
T 13 O T 1 e T .
b I]] I [
Ifid il 0 1
,I. 'I""i (e 'l'!"i (s
Topakst g opent e e
- Load)
s | - Balancer Authorization c“'l'.':fﬂh" Mapping
Z| g HBase \ g
E ,, g
i @
| Lock Manager |
HDFS ¥ ¥ Task Manager
Transfer
........ <FTP - FILE + LOCAL + HTTP - SMB HDFS + HDS>

e Compliance with HDFS APIs il
Append, create, delete, '
getFileStatus, getUri,
getWorkingDirectory, listStatus,
mkdirs, open, rename,
setWorkingDirectory, getScheme,
initialize,..

* Directory name space

With HBase to handle directory operations

e.g., Hive directory operations

ele

s L syst!mzzfsl dat 4
0 drlversfmouselml sys

1. 2_drivers/mouse/m2.sys

Compliance with HDFS Interfaces, and thus Hadoop Ecosystem
19

] b oL TS
i}] 1] | I (i il Hive, Spark HTTP Request
o 1R L | VA 1
gLl s [1y 11 S]]
L !- [r|I L% L e i _!_IE i I i T
e part el fae i pe e HDFS
Interface Load uthorization nr!nectiun i
Balancer s

=

3

; -~ 3
ZI2 HBase \ g
I + I &
<3 | HDFS [Lock Manzg g
Task Manager E

E

Transfer
<FTP : FILE LOCAL + HTTP - SMB - HDFS - HDS>

Service differentiation: long (e.g., copy) and short (e.g., 1 1st and de l ete) RESTful tasks, each
with its dedicated connection pool

Role-based authorization

Storage protocols and pipeline streaming: FTP, FILE, LOCAL, HTTP, SMB, HDFS, and HDS, currently
TinyURL mapping

Performance metrics: time elapsed/phase and resources for handling a request

Apache HBase Client Side Enhancement

20
J_ | i |_ | i |- 1 1_ | J_ =~ Hive, Spark T
e 1 iy 1 R (1 SO v 1 O 1 Oy O 4 1 R S— B R
phddpehe phile pelE LalE aE g HTTP Server
LR A SO AT el T AT =
feit] nad - HDFS 3
o F S (- || woona (|| 2| |3
{5 [
st £ I T g E
>||% || HDFS Y= Lock Manzg | g
\ Transfer Task Manager [
e Write: update, insert and delete (major traffic to HBase) g

filter

candiates w

partitions

map: regions allocated to region servers

m: maximal number of connections issued by a client _—

n: maximal number of connections accepted — onnections
by a region server naastes QI@ o

t: maximal duration (or timeout) of a connection o

* Problem: —

for each client within a time window w, o <

maximize number of successful requests i ‘m parttions

e Contribute to Apache HBase 1.3 and 2.0 _—
Improvements: 20% latency reduction on average per request, using 50% of connections
Implications: 50% free connections for short messages such as read

.

Scalability and Fault Tolerance

Load
Balancer

Authorization QUIeEon Mapping

']
Lock Manager

Task Manager

Transfer
<FTP : FILE LOCAL + HTTP - SMB - HDFS - HDS>

. Jabbon aseyd awi)

Each HDS server learns HDS membership on-the-fly
Read-dominant workload

Membership information need not be precise and up-to-date
Based on ZooKeeper

ele

LT X

m Server®f% m FBRRA
Al 5L ¢ Supermicro X80BN Hadoop 2.6.0-cdh5.10.0

CPU : Intel Xeon E7-8850 @2GHz HBase 1.2.0-cdh5.10.0
2B %8 : 512GB ZooKeeper 3.4.5-cdh5.10.0

>

>

>

> M7 750GB * 16 Yarn 2.6.0-cdh5.10.0
Ji

22

YV YV VY

Hive 1.1.0-cdh5.10.0
e (165 2L)

» CPU : 80 x 2GHz

> eiifd : 32GB

» H 7kt 750GB

Benchmark in our development environment, avoiding to introduce extra workloads
and traffics to production systems

ele

23

Performance Results

Autonomy
Overheads

S3PON SNPY Jo JBquinn

L==] w =t '] (=]

T T T T T T o T T T T T
2]

g 14 i
=z
2
= —
D 1o
< o .m
= [
E
I =
| . .M.
- 1~
|-
=
@
I {2 E
=
-"ym_u_ 4w
% o
= m 1=
=] ==} w =+ [al [=] -
(o1 x sessaifg) indyBnoay
T T T T T
T
3 L
+ x s
R,
il BRI
= Lo c
I 2 =9
@ | OR
o
73
3
—_
zE k3 SRR
3 2 = A
L T = c
= m | &
o in
m |
e IO |
B o e € R K R @ —
S50 S REE AN EE L NN NS00 50,0 I .m -
T o
w L
=
L > |
£ — —
R S
I Senivietetetotntetaleteletetololeteluletatelolot
L
i R
L L L L L L L L L
- - Lt} L) M~ =] Il r~ et ©w L Ll
— =] =] [=] [=] [=] ~ 1] i
S40H 91 SdH waolj oney oney Buipeo

Transparency
Load balancing

(1000, 10) (10000, 1)

(d)

Data Access Pattems

(100, 100)

(1, 10000)

Node IDs

234567 8 9101112131415
(©

1

Related Works

m SquenceFile and Hadoop archives: Pack small files into a large one

> How about metadata, HDFS interface, etc.?

m WebHDFS and httpFS: HDFS extension over HTTP
» Cannot resolve the namenode metadata issue

m Apache Sqoop: from DB tables to Hadoop
> Not for non-DB storages

®m Flume and Kafka
> FIFO data streams+Pub/Sub

24

Outline
m RREZ R

m iF* Open Source R % + F| £ $77" s SL LA K W PRT>
» Hadoop Data Service (HDS or TDS)
> Distributed R/Python Computing Service (DRS or

DPS)

m Status

ele

25

Distributed R/Pythin Computing Service (DPS)

e Observations:

26
o * S HAITAR (GHTHFB) R
o %A%; d i — iFpattern :

=4 \légi—f!r;ﬁ'%\]ﬂ{
o FTHELAAPEREL ST
o CRERTFHMAED Fkh S i)

o TiTitoupieR IR BETFILETH FERTEL
o {IRIEEE L e 42583 7 :Rand Python (E2HTHE L € B aig 3

o + § FHert¥ 1 & :Hadoop MRZ Spark
e Need to familiar with MR “framework”
o AFRAL . T {71 even with Spark

o &3 aeR/Pythonfz ;' § FIK “#78” T S a £XATHRF

27

DPS: A Quick Overview

27

B B it e-R/Python238 & 403 & B8 5 R 7 crpRI%

R/Python tasks

e 3% X TN % %41 fcp % : R/Pythond 42
CTHRRALERS o T [GF) [
al
A 2 N\
o F*Hadoop/YARN#4 S— ERALEATELLE

It A ABE

YARN]
o £ iFDRSH s -z 73
A,\ f’(flj %’ # ‘;; ﬁ f_? [Hadoop

DPS: A Quick Overview (cont’d)

o ABEMEATHFERR ZRRSEHRI %= 2T ¥ B~ with TDS

e Features:

e Batch input: a set of data objects in HDS
Fault tolerance: tolerate hardware/software faults while lasting computation
Scalability: scale if resources are available

Efficient resource management: memory
monitoring/allocation/deallocation/sharing among tasks and among jobs

e Not real-time currently, and for big job only
e Bigjob can tolerate startup cost while real-time small job cannot

e Akin to Hadoop MR framework

e Job: AM, NM’s (containers), heart beat among AM and containers, tasks
scheduling

28

Internal Workflow

0 H 4T A

1.R/Python i #& 3%
2.X BB %R
3. %8 &

® 4.5 IR

al
HDS RESTful API Http
Server -

i

Ex # DPSClient i
3% 2 DPS Job

DPSClient

—

[RM

)24 g
YARN
application

.

A
A
| |
L Container Container
537 FR/Pythonfz %

29

s # —"ZE & B (The Case of R programs)

Configuration:

http://host/hds/v1/run?code="..."&data="..."&config="..."&codeout="..."&consoleto =“...“ //fork a DRS job
code = ... //R program path

data = ... //input data file, containing a list of paths of data files

container_spec = ... //specification for a set of containers

codeout = ... /laggregation of output data files for R programs running in each container

consoleto = ... //R program console output

R program body:
tempData <-read.csv(DRS_INPUT_FILE_PATH , header = TRUE) //read data files locally
data <- ...(tempData) //filter and load data

sumResult <- sum(data) //compute sum
sdResult <- sd(data) //compute standard deviation
medianResult <- median(data) //find median

0 ?fé’*'ﬁ(’*’—"’)

m For each user,

Development Items

FRALE A

> F,/};}(mﬁ"';‘;ob"ﬁﬂl P

[yl 44\,

> HFE I OF R

AirEpe

31

YARN Hierarchical Queue

1009
root

L

0% v 50% ,.Y.

50% v
DRS i

X &R

Zookeeper Q

/root

Iroot/queue

o,
eéo}@

- [root/wait

Iroot/queue

froot

S~ JI’OOUW&II

FEOOE

Queue E#@E 2§

default MR i

v v v v
ST
10% 10% 10% 10% 10%

g 1 VEAT
i£ » Queue E

32

In a Job,...

Application master (AM) performs to:

> Gather and maintain a list of tasks and a set of resources
e Pertask info: file size, locations, ...
e Per container info: CPU cores, memory, ...

> Match tasks and containers (task scheduling issue)
e E.g, largest task first and random assignment

Dispatch tasks to containers

Monitor and gather tasks execution status for performance and failure recovery
Even vary resource spec. on-the-fly

Overlap scheduling with container computation

Y V VY V

“Per” container performs:

> To wait for notification of task assignment
> Then to fetch task data and compute
> To return AM computation status

33

Jobs Heterogeneity

F S S ¥ - DRS jobp #ttasks F ik g &7 -

(FR2ANFTREPGEE DA BEEE)
nEHERAE
2048

1336
1280

Tasks

1024

s

([T
B R AR A AR

'E'?

el Contamers

34

wEMEAE
2048

ERZECE E

> 7 F*100%

e DEFGA, % ¢3¢

& 13%?50(4

ABCH % 5]
M % pT

1230

512

236

32 Al 7

>

35

o 2048 MB: F iR ¥

« 1024 MB: ik %

B s P A@E? w2 £l
B L B ? System operators?
37 fEfesN e runtime” 7 3
Even challenging when
resources come and go

36

F-

36

‘K K]¥F,” “anytime”

BB I g

T ER 70

37

Solution Architecture

Multiple Queues:

characterized by task

> attributes (file size)

Resource pool:

grouped by comp. quantity
(mem space) per container

Matchmaker:

* learn on the fly by
measuring 1 ¥ = 5 & %
TR

* matching rule

37

Queue ll
CEEH1

3b.3 EARIRIEF F

3b.3 EAk PR AR FlQUeUE

i 3a.E 3345 &
3b.3% Kk PRS- #) Queue Il
\
N\

S
2R L
% 2.5 R g A=

A Bit Detailed

m Matching rule:
(container pool, task queue)

m Repeat:
Step 1: For each “given” pool, observe T ik & * & 2 1 i% = 5 5 per task
Step 2: Update matching rule (e.g., attribute of a task queue) due to task migration

. A
> Multiple-Server-Multiple-Queue (M/G/k model)
> Service differentiation

39

iﬁ' a::'(/fl"ﬁ g‘

Refine attributes of a given resource pool in association rule

E.g., total mem. space in Pool A increased from 16 GB to 32 GB
Number of containers in Pool A increases from 8 to 16 (assuming 2GB mem. assigned to each

>
>

container in Pool A)
> Consequently, parallelism is exploited, thus reducing job execution time

Note: Some pool3¥ +c F ik % 77 some other pool$# ! 7 ik
> E.g., some pool B releases 16 GB of mem. space by killing 4 containers each with 4 GB mem

Proportional allocation (&t 784 :& 3 ix 73 friqueues) for faireness:
For each queue Q with tasks, compute:
W(Q) = Queue Length(Q) x Per Task Exec. Time Expected(Q)

Allocate resources < W (Q) to Q

>

>

40

FORHDEZEIEBH] (F8)

® Preemptive-based :
> RRSEGK TR iF
BLane

PHARE - RS ERLT T
V\PL .ﬁv’%ﬁg JL

p
£ H N A
& {7 ehcontainer o i * A

® Non-preemptive-based :

> Pertaskdone : = § § Eire R EFTH o @ ¥ O FEE L g

’

B A

‘—'\\

BRI

LT LR b A AR TG EY mfﬁﬁ&ﬁ%ﬂﬁaﬁ

R e

> Unusedresources : § 7 — B iIF7 [/ € & E4% > Qa5 R\

Y

41

42

R oEyy (1 TR TR
. W

o %] 4% (49100 KB)2 5 £ 1+ 4% (10 MB)
* 1000 i=3% . 7 98%E_| 4%k » 2%~ 44 %

. "“;};%zﬁo 1GGBm,ch'r%%§p o & =4iEpools» 2 ¥ - BEpools 3 8+
PHEAYEBH~ 3 512 MBsmem - ¥ = B R|4B1GB,2%2 GB - ﬂ}rlfl%4
GB

o FHIEH A A B s

DRS 1.0 DRS 2.0
L= = 94 48%) 64 534/
L 94 427 64 48%)
TEE 94 53% 64 504,

ﬁ$'DRSZOF§’ﬁ’5£‘f TR FLEAZFTRARLFTHE L A2 E 3
lﬁﬁmllfﬁi},,gg.ggﬁ F’*F’*F"’&F*ﬁl‘?’

ele

T RBE

Phase 1:

> %%ﬁﬁ%ﬁﬁwm
a8 TRAD i3
R Red T E O
TehF iR g K

PR o - N s
)i

Phase 2:

> MR TR G20+

Phase 3:

> "$*§cE}EI

> EHERHBF S (eg,

Spark) B~ %

AT RANERE

512MB container# =45 E

40

pA

ﬁﬁ
Phase 1l Phase?2 Phase 3

78

I 2 / 8 9
EE (B30 —&EE)

43

Stress Test (X 7%= #)

44

% el A% (9100 MB) 204 £ ch4 % (10 GB)

DRS 1.0% 2.044 7 2 4~ Z 74 4 pr &
E o REFPFTdieDRS 208
20— EBATEEREEREIIAT R RS
B (5307 —Em) EiantF H > Fla & posk iR br

—ER o

Interplay of DPS and TDS

45
DPS enjoys TDS: Per DPS container
allocates data through TDS
B K
DPS not only helps R/Python D e
. . Computing Service
analytic programs to execute in a

Transparent

distributed, scalable platform, but Hadoop Data

Serice

allows the analytic programs to
access data without sophisticated
Hadoop knowledge

SR NS T R

Both compute and storage are
transparent to analytic users

ele

Summary and Outlook

46
m TDS is used in a semiconductor manufacturing foundry for 3.5 yrs

> TDSPEF%: (k+1)-th storage: Hadoop (HDFS+HBase) + catalog

> Features: Load balancing, synchronization based on sequential memory
consistency model, intelligent and transparent data placement, compliance
with HDFS interface and thus Hadoop ecosystem, pipelined and distributed
data streaming, scalable and fault tolerant

» ¥2HBasex # for easy administration

m DPS: Distributed R/Python computing service over TDS
m Contribute back to Apache Open Source community

m Ongoing: TDS and DPS in a low-end server box and/for streaming data

%

Reference

IEEE Big Data Conference
2018: IEEE 1st-tier conf. on
big data, regular paper in

the main track (100
accepted among 570
submissions, and 1100
participants), industry
session

21018 [EEE Intemational Conference on Big Data (Big Data)

Bridging the Gap between Big Data System Software
Stack and Applications: The Case of Semiconductor
Wafer Fabrication Foundries

Chia-Ping Tsai*", Hung-Chang Hsiao™ %, Yu-Chang Chac!, Michael Hsu® and Andy RK Chang*
*Apache HBase Committer and Project Management Committee (PMC)

"Department of Computer Science and Information Engineering, Mational Cheng Kung University, Tainan 701, Taiwan
Division of Intelligent Manufacturing Service and System, Information and Communication Research Laboratories,
Industrial Technology Research Institute South Campus, Tainan 709, Taiwan
“Information Technology Division, United Microelectronics Corporation, Taiwan
YE-mail: hehsiaogcsie. noku. adu. tw

Abstract—We present in this paper two novel i

waler foundries have embraced

services bascd on Hadoop for big data storage and computing in a
Taiwan’s semiconductor wafer fabrication foundry. The two services
include Hadoop data service (HDS) and distributed R language
computing service (DRS), which have been built and operated
in production systems for 3.5 years. They evolve over time by
ing users’ requi . HDS is a wel
based distributed big data storage fucility, Users simply rely on Hl
to access data objects stored in Hadoop with the HTTP protocol. In
addition, HDS is scalable and reliable. Moreover, HDS is efficient
and effective by intelligently selecting either Hadoop distributed file
system (HDFS) or database (HBase) for publishing data objects.
ally, HDS is transparent to existing analytics and data inquiry
applications, such as Spark and Hive. While HDS is 2 unified storage
for supporting sequential and random data accesses for big data
in the wafer fabrication foundry, DRS is a distributed computing
framework for l‘_ﬂ)lcl.l R]angugt users. R users employ DRS to
cnjoy data-p effortlessly and Similar
to HDS, DRS can be horizantally scaled out. It guarantees the
completion of computational jobs even with fuilures. In particular, it
Tesources on the fiy,
job execution time and It of allocared
This paper discusses the design and implementation features for HDS
and DRS. It also demonstrates their performance metrics,

Keywords: Hadoop, Big data storage, R language computing
platform, Services computing

[INTRODUCTION

Semiconductor f ing is a high-end technology indus-
try that not enly improves its manufacturing technology over time
but also relies on state-of-the-art information Tor pro-
duetion tom. In the i 1or ing indusiry,

data volume increases cxponentially during the manufacturing
process, which greatly helps in monitoring and improving pro-
duction quality. To accommeodate excess data, Apache Hadoop [1]
is often adopted. Hadoop is essentially a computing and storage
facility for big data, That is, generated data are stored in Hadoop
and then analyzed in a bateh and/or real-time manner. Hadoop has
been developed and used for a decade and iis ecosysiem remains
PrOSPETOUS

* Hunp-Chang Hsio was partislly
Research € cl"c—' (IMRC) from Th

pported by the Inellsgent Manufacturing
tred Aseas Research Cester Prograe
ucation Sprout Project by the Minisay

of Edazation {MOE) in Taiwan,

978-1-5386-5035-618/531.00 ©2018 IEEE 1864

Hadoop for big data applications, including fmult derection and
classification (FDC) and vield analysis (YA). We discuss in this
paper twe underlying infrastructural services, namely, Hadoop
data service (1IDS) and distributed R language computing service
(DRS), based on Hadoop for a semiconductor manufacturing
foundry in Taiwan, HDS and DRS have been designed, imple-
ted, and operated for 5.5 years as of this paper's wriling
ce 2015 Roth HDS and DRS are 7 x ?-4 aperational services
in prody systems h ify . HDS and DES are
d.rwloped I meet the Io]]uu'm.g Tequirements:

« Transparency: Users are likely fo access data objects stored
in big deta sysiem by wsing existing wols with which
they are familiar, p g the red of productivity
due to the lengthy learning curve of users. F‘m(.._u]arly, for
accessing data objects in Hadoop, an essential step for users
is to realize the architecture of Apache Hadoop distributed
Sile systems (HDFS) and the practice of HDFS APIs [2],
[3], [4]. Users need to be familiar with these APIs so
they can fully utilize HDFS, thus maximizing e HDFS's
performance. In addition, users have w be well trained w
manipulate distributed databases in Hadoop (e, Apache
FHBase [5), [6], [7]). Moreover, existing applications require
sophisticated efforts to migrate to Hadoop. Users have been
familiar with traditional statistical and'or machine learning
analvtics tools such as R [8] and Python [5]. Spectfically,
earlier developments based on these enalytical tools have
heen associated with production systems for quite some
time. An unlikely approach is to remnvent the wheel o
embrace novel technologies such as Hadoop. Thus, the use of
existng efforts and experiences as a basis to transparently
leverage emerging solutions has become a critical design
consideration.

. Autonomy: Big data storage and computation technologies
are typically based on a server farm (or a cluster of com-
modity off-the-shelf servers). By an “off-the-shelf server”
we mean 2 normal storage and computation device that
15 equipped with abundant computational resources (e.g.,
processor cycles, mam memory, and secondary hard drive
spaces) and software stack (eg., Linux operating system,
Java virtual machine, and Hadoop) available in the public do-

e 47

SQL Loader

m Objective: Provide SQL over Hadoop for analytic users

m SQL loader
> Load data stored in relational DBs into Hadoop (Phoenix/HBase)

m Features:
> Multithreading (single machine) and MapReduce (cluster) versions
> Incremental and fault tolerant

48

TDS- and DPS-Lite in a Server Box and/or for Streaming

49

m TDS and DPS server appliance

> Lite server (1 server) vs cluster farm (e.g., 30 servers)

m Support for streaming

> Data continuously generated over time
> TDS streams data to Hadoop
> DPS computes streaming data

HDES Architecture

@ File is partitioned to fixed-size
chunks

@ Namenode manages a centralized
directory for accesses like create,
delete, append, etc.

@ Could have a backup standby

@ Datanode stores file chunks
@ Datanodes may fail arbitrarily,
and be added dynamically
@ Scale: x10.000
@ Both namenode and datanode are
capable of computation and
storage (e.g., servers)

{foo/sys.log
fuser/ john/o.c

c
namenode

sk
LA

datanode

client

e 5]

Metadage;_,opg"" Namenode

HDFS

HDFS Architecture

Metadata (Name, replicas, ...):
/home/foo/data, 3, ...

Block ops

Read Datanodes

H H
[]

|
g % - ‘ Replication

Datanodes

L]

Bloc

ks

/

Rack 2

52

What is HBase? (cont’d)

m Take advantages of
commodity
components
(physical servers or
VMs)

m Features:

> Scalability
> Availability
> Reliability

SQL Interface

HBase Clients

'.' RPC

Region Servers

HDFS Client (APIs)

,., transfer

Data Nodes

Operating System

On-disk File System

Disk Disk
Driver Driver

Component stacks

Disk
Driver

53

Phoenix

HBase

T
O
A
)

Overview (3/4): HBase Table

Family 1 amily
row A
row B
row C NULL?

row A column A: column D:
double varchar
row B column B:
int wvalue
row C column C:
long int

Table-Logical View

Architecture (2/7): Table and Region

—’[Keys:[A-F)]

[Region Server l\

[Region Server 2\

’[Keys:[F-K)]

[Region Server 3\

—’[Keys:[P-U)]

- J

D[Keys[U-2)]
N

J

’[Keys:[K-P)]

55

Architecture (3/7): HRegionServer, HMaster and Zookeeper

Client — Zookeeper HMaster

HRegion

HRegion

HBase

HDFS

56

‘Architecture (5/7): HLog, MemStore and HFile
= |]

MemStore Store
m o . .
Sync()
e
rollWriter() HLog

—— 5 |

	� Big Data Infrastructure Technologies for Semiconductor Wafer Fabrication Foundries��Hung-Chang Hsiao (蕭宏章)�Professor�Computer Science and Information Engineering�National Cheng Kung University
	Outline
	Outline
	Providing 巨量資料平台 to End Users…
	現象 (應用端)
	現象 (平台服務提供與管理端)
	需求：一套儲存系統橋接舊使用者於新技術
	Joint Research by Semiconductor Wafer Fabrication Foundry�and 成大資訊系分散式系統實驗室
	具體成效
	TDS Software Stack
	Software Stack: Everything Together
	Usage Patterns
	Usage Patterns (cont’d)
	TDS RESTful APIs
	Load Balancing
	Lock Service based Sequential Consistency Memory Model
	Transparency by Mixing HDFS and HBase
	In Compliance with HDFS Interfaces, �and Seamless Integrated with Hadoop Ecosystem
	Compliance with HDFS Interfaces, and thus Hadoop Ecosystem
	Apache HBase Client Side Enhancement
	Scalability and Fault Tolerance
	實驗環境
	Performance Results
	Related Works
	Outline
	Distributed R/Pythin Computing Service (DPS)
	DPS: A Quick Overview
	DPS: A Quick Overview (cont’d)
	Internal Workflow
	使用者角度 (The Case of R programs)
	Development Items
	管理者角度
	In a Job,…
	Jobs Heterogeneity
	資源過剩與不足
	目標
	Solution Architecture
	動態“任務”分配
	A Bit Detailed
	動態“資源”調整
	資源調整之彈性機制 (時機)
	實驗數據 (工作執行時間)
	實驗觀察：動態資源調整與配置
	Stress Test (任務成功率)
	Interplay of DPS and TDS
	Summary and Outlook
	Reference
	SQL Loader
	TDS- and DPS-Lite in a Server Box and/or for Streaming
	投影片編號 50
	投影片編號 51
	HDFS
	 What is HBase? (cont’d)
	 Overview (3/4): HBase Table
	 Architecture (2/7): Table and Region
	 Architecture (3/7): HRegionServer, HMaster and Zookeeper
	 Architecture (5/7): HLog, MemStore and HFile

