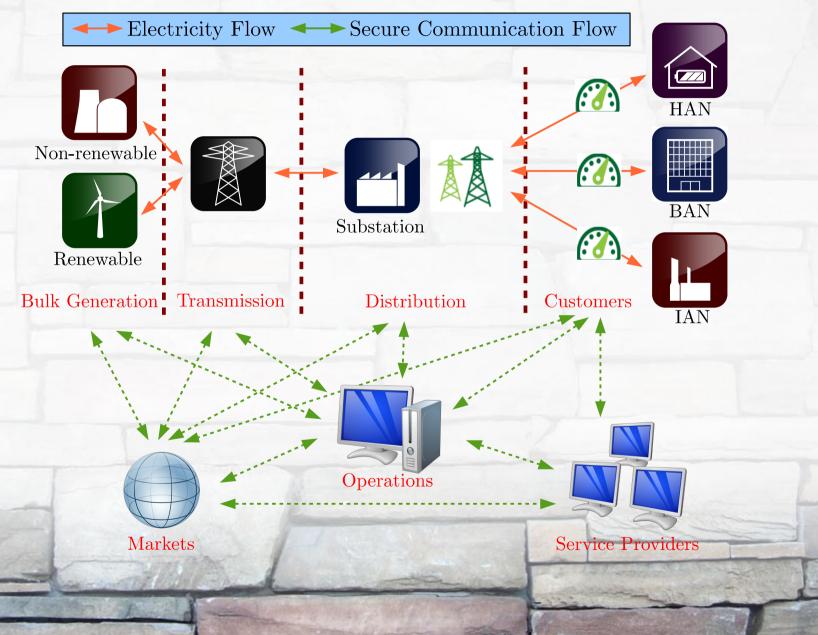


The final publication is available at http://ieeexplore.ieee.org.

A correction to the final paper has been published in ResearchGate (DOI: 10.13140/RG.2.1.4006.8649).

- The development of smart grids becomes a global trend
 - Smart grids can handle bi-directional energy flows better
 - Reduce energy consumption



Introduction

- Smart grid applications
 - Know how much electricity users have consumed
 - Get the average electricity consumption data

Introduction

- The privacy issues of smart grid communication
 - Meter readings are sensitive
 - Attackers may catch the consumption data to derive users' lifestyles

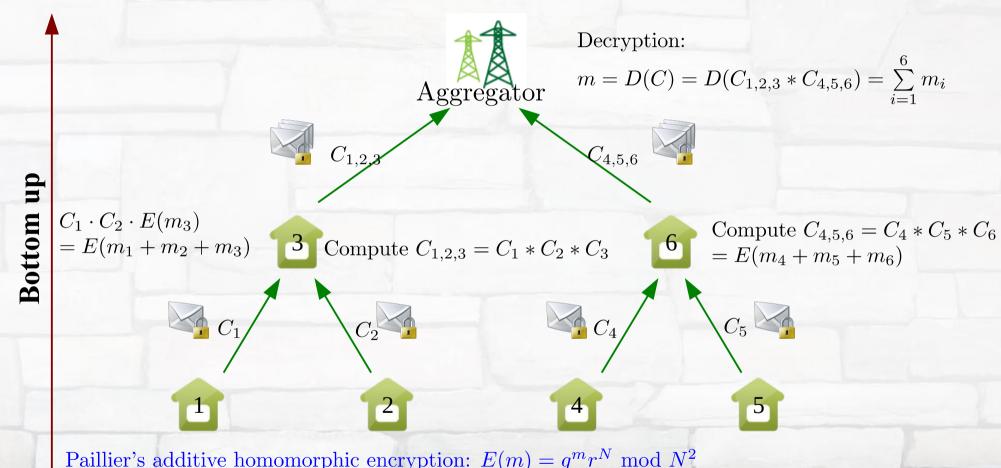


- Prevent anyone from stealing or tampering with the data
 - External attackers: Hackers
 - Internal attackers: Electricity suppliers

Related Works

- Li et al.'s Scheme
 - Secure Information Aggregation for Smart Grids Using Homomorphic Encryption
- Garcia et al.'s Scheme
 - Privacy-Friendly Energy-Metering Via Homomorphic Encryption
- Lu et al.'s Scheme
 - EPPA: An Efficient and Privacy-Preserving Aggregation Scheme for Secure Smart Grid Communication
- Petrlic's Scheme
 - A Privacy-Preserving Concept for Smart Grids

Li et al.'s Scheme



Paillier's additive homomorphic encryption: $E(m) = g^m r^N \mod N^2$

Garcia et al.'s Scheme

Garcia et al.'s Scheme

Aggregator

$$\sum_{W=1}^{5} \left(\sum_{Y=1}^{5} m_{Y-W} \right) \Rightarrow \sum_{i=1}^{5} m_{i}$$

Lu et al.'s Scheme

$$C_1 = g_1^{d_{1,1}} g_2^{d_{1,2}} \dots g_L^{d_{1,L}} r_1^N \mod N^2$$

$$C_2 = g_1^{d_{2,1}} g_2^{d_{2,2}} \dots g_L^{d_{2,L}} r_1^N \mod N^2$$

$$C_3 = g_1^{d_{3,1}} g_2^{d_{3,2}} \dots g_L^{d_{3,L}} r_1^N \mod N^2 \longrightarrow$$

$$C_4 = g_1^{d_{4,1}} g_2^{d_{4,2}} \dots g_L^{d_{4,L}} r_1^N \mod N^2$$

$$C_5 = g_1^{d_{5,1}} g_2^{d_{5,2}} \dots g_L^{d_{5,L}} r_1^N \bmod N^2$$

$$C = \prod_{i=1}^{5} C_i \mod N^2$$

Lu et al.'s Scheme

 $= \prod_{i=1}^{5} g_1^{d_{i,1}} g_2^{d_{i,2}} \dots g_L^{d_{i,L}} r_i^N \mod N^2$

 $= g_1^{\sum_{i=1}^{5} d_{i,1}} g_2^{\sum_{i=1}^{5} d_{i,2}} \dots g_L^{\sum_{i=1}^{5} d_{i,L}} (\prod_{i=1}^{5} r_i)^N \mod N^2$

 $C = \prod_{i=1}^5 C_i \mod N^2$

Trusted Operation Authority (OA)

↓ (Paillier's decryption)

$$M = a_1 \sum_{i=1}^{5} d_{i,1} + a_2 \sum_{i=1}^{5} d_{i,2} + \ldots + a_L \sum_{i=1}^{5} d_{i,L}$$

(super-increasing ↓ sequence decoding)

The aggregated data

 $= q^{a_1 \sum_{i=1}^{5} d_{i,1} + a_2 \sum_{i=1}^{5} d_{i,2} + \dots + a_L \sum_{i=1}^{5} d_{i,L} \left(\prod_{i=1}^{5} r_i\right)^N \mod N^2}$

 $= g^{a_1 \sum_{i=1}^{5} d_{i,1}} g^{a_2 \sum_{i=1}^{5} d_{i,2}} \dots g^{a_L \sum_{i=1}^{5} d_{i,L}} (\prod_{i=1}^{5} r_i)^N \mod N^2$

Operation Center

Petrlic's Scheme Collector

Internal Attackers

- Li et al.'s scheme
- Garcia et al.'s scheme
- Lu et al.'s scheme
- Petrlic's scheme

The Proposed Scheme

Off-line

TTP

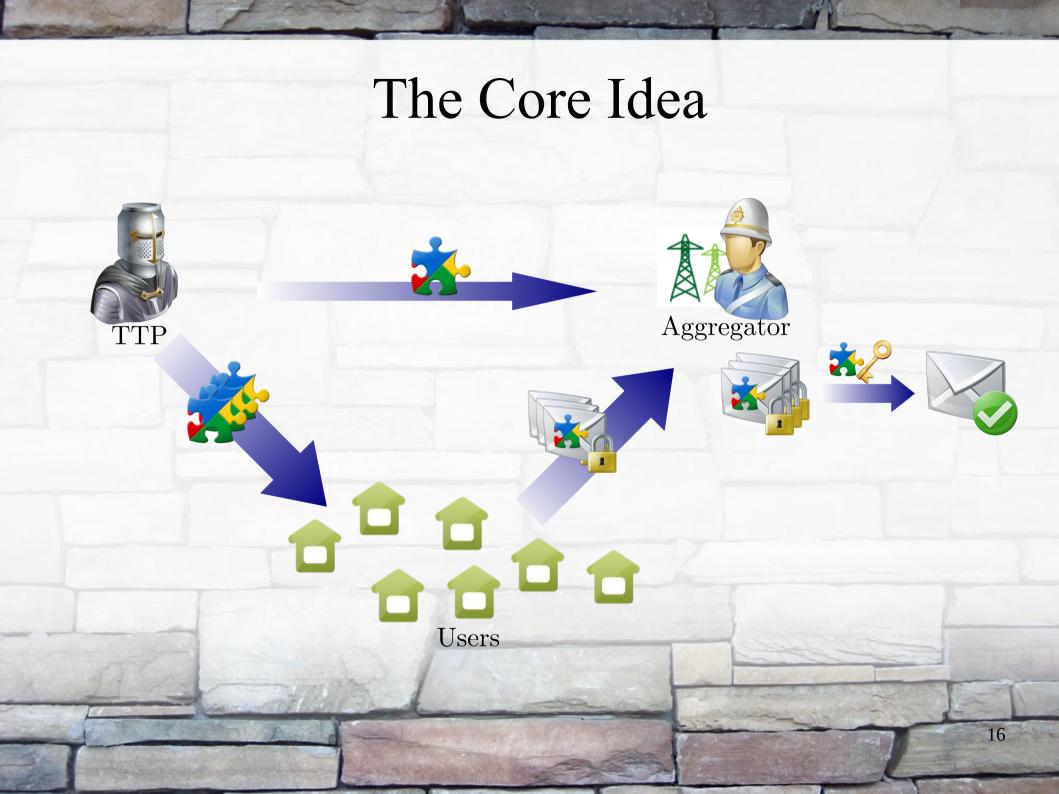
- (2) Initialization Phase
 - Send a blinding factor

(2) Initialization Phase

- Send blinding factors
 - (3) Registration Phase
 - Generate users' key pairs

Aggregator

- (1) Initialization Phase
 - Generate a secret
 - Publish public information
- (4) Aggregation Phase
 - Get the total power usage data of users without knowing the individual consumption of each user



The Proposed Scheme

- Initialization Phase
- Registration Phase
- Aggregation Phase
- Remark (Tree-Based Aggregation)

17

Initialization Phase

- 1. $e: \mathbb{G}_1 \times \mathbb{G}_1 \longrightarrow \mathbb{G}_T$, and $\mathbb{G}_1, \mathbb{G}_T$ are GDH groups with prime order q
- 2. \mathbb{G}'_1 : a multiplicative group with order N where $N = q_1 * q_2$
- 3. H_0 : a one-way hash function, $H_0: \{0,1\}^* \longrightarrow \mathbb{Z}_q^*$
- 4. H_1 : a one-way hash function, H_1 : $\{0,1\}^* \longrightarrow \mathbb{G}_1$
- 5. H_2 : a one-way hash function, H_2 : $\{0,1\}^* \longrightarrow \mathbb{G}'_1$
- 6. H_3 : a one-way hash function, $H_3: \mathbb{G}_1 \longrightarrow \mathbb{Z}_q^*$
- 7. t: the time when the aggregator needs to aggregate the power usage data
- 8. U_i 's: the neighbor users, where $i = 1, 2, \ldots, n$
- 9. ID_i : the identity of U_i
- 10. π_i : the blinding factor of U_i
- 11. x_i : the private key of U_i
- $-12. Y_i$: the public key of U_i

Initialization Phase

Aggregator:

 q, q_1, q_2 : three large primes

 \mathbb{G}_1' : a group with order $N = q_1q_2$; $(g_0, u) \in_R \mathbb{G}_1'^2$; $h = u^{q_2} \in \mathbb{G}_1'$

 \mathbb{G}_1 : a GDH group with order q and generator g_1

 $\{N, q, g_0, g_1, u, h\}$: public keys; $\{q_1, q_2\}$: secret keys

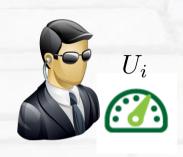
TTP:

Choose $\{\pi_0, \pi_1, \dots, \pi_n\}$ at random such that $\sum_{i=0}^n \pi_i \equiv 0 \pmod{N}$.

Send π_0 to the aggregator in a secure manner.

Send π_i to U_i securely for $i = 1, 2, \ldots, n$.

Registration Phase



Private key: $x_i \in_R \mathbb{Z}_q^*$ Public key: $Y_i = g_1^{x_i}$ $r_i \in_R \mathbb{Z}_q^*$ $\alpha_i = g_1^{H_0(r_i||ID_i)}$ $\beta_i = H_0(r_i||ID_i) - x_iH_3(\alpha_i||Y_i) \mod q$

 $\{Y_i, \alpha_i, \beta_i, ID_i\}$

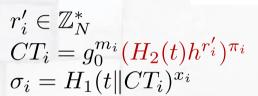
*Correction:

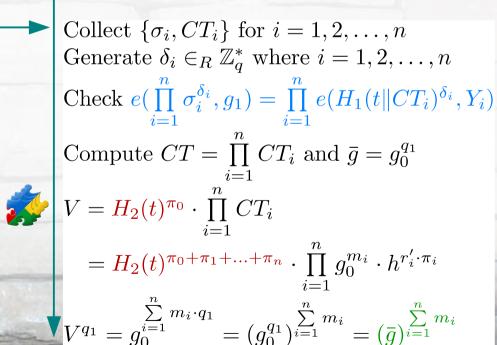
 $\{Y_i, \alpha_i, \beta_i, r_i, ID_i\} \rightarrow \{Y_i, \alpha_i, \beta_i, ID_i\}$

Check $\alpha_i = g_1^{\beta_i} Y_i^{H_3(\alpha_i||Y_i)}$ Publish $\{Y_i, \alpha_i, \beta_i, ID_i\}$

*ResearchGate (DOI: 10.13140/RG.2.1.4006.8649)

Aggregation Phase





Get $\sum_{i=1}^{\infty} m_i$ by Pollard's lambda method

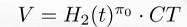
Resisting Internal Attackers



Remark (Tree-Based Aggregation)

Aggregator

Verify $\sigma_{1,2,3}, \sigma_{4,5,6}$



$$V^{q_1} = g_0^{\sum_{i=1}^{6} m_i \cdot q_1} = (g_0^{q_1})^{\sum_{i=1}^{6} m_i} = (\bar{g})^{\sum_{i=1}^{6} m_i}$$

Verify σ_1, σ_2

$$CT_{1,2,3} = CT_1 \times CT_2 \times CT_3$$

$$\sigma_{1,2,3} = H_1(t||CT_{1,2,3})^{x_3}$$

 U_6

Verify σ_4, σ_5

$$CT_{4,5,6} = CT_4 \times CT_5 \times CT_6$$

Compute
$$\sigma_{4,5,6} = H_1(t||CT_{4,5,6})^{x_6}$$

$$CT_4, \sigma_4$$

$$CT_5, \sigma_5$$

$$CT_1 = g_0^{m_1} (H_2(t)h^{r_1'})^{\pi}$$

$$\sigma_1 = H_1(t||CT_1)^{x_1}$$

$$CT_{1} = g_{0}^{m_{1}}(H_{2}(t)h^{r'_{1}})^{\pi_{1}} CT_{2} = g_{0}^{m_{2}}(H_{2}(t)h^{r'_{2}})^{\pi_{2}} CT_{4} = g_{0}^{m_{4}}(H_{2}(t)h^{r'_{4}})^{\pi_{4}} CT_{5} = g_{0}^{m_{5}}(H_{2}(t)h^{r'_{4}})^{\pi_{4}} CT_{5} = g_{0}^{m_{5}}(H_{2}(t)h^{r'_{4}})^{\pi_{4}} CT_{5} = g_{0}^{m_{5}}(H_{2}(t)h^{r'_{4}})^{\pi_{5}} CT_{5} = g_{0}^{m_{5}}(H_{2}(t)h^{r'_{5}})^{\pi_{5}} CT_{$$

$$CT_4 = g_0^{m_4} (H_2(t)h^{r'_4})^{\pi}$$

$$\sigma_4 = H_1(t||CT_4)^{x_4}$$

$$CT_{1} = g_{0}^{m_{1}} (H_{2}(t)h^{r'_{1}})^{\pi_{1}} CT_{2} = g_{0}^{m_{2}} (H_{2}(t)h^{r'_{2}})^{\pi_{2}} CT_{4} = g_{0}^{m_{4}} (H_{2}(t)h^{r'_{4}})^{\pi_{4}} CT_{5} = g_{0}^{m_{5}} (H_{2}(t)h^{r'_{5}})^{\pi_{5}} CT_{5} = g_{0}^{m_{5}} (H_{2}(t)h^{r'_{5}})^{\pi_{5}} CT_{5} = H_{1}(t||CT_{1})^{x_{1}} CT_{5} = H_{1}(t||CT_{2})^{x_{2}} CT_{5} = H_{1}(t||CT_{5})^{x_{5}} CT_{5} = H_{1}(t$$

Comparison

	Our Scheme	Li et al.'s Scheme	Garcia <i>et al</i> .s Scheme	Lu et al.'s Scheme	Petrlic's Scheme
Against External Attackers	Yes	Yes	Yes	Yes	Yes
Against Internal Attackers	Yes	No	No	No	No [†]
Data Integrity	Yes	No	No	Yes	Yes
Secure Batch Verification	Yes	N/A [‡]	N/A [‡]	No	N/A [‡]
On/Off-line TTP	Off-line	No	No	On-line	No
Formal Proof	Yes	No	Yes	Yes	No

†: The author claimed that it can resist internal attackers, but it used an administration approach, not a cryptographic technique.

‡: No batch verification in the scheme

Security Proofs

• Semantic Security

Ciphertext: $CT_i = g_0^{m_i} (H_2(t)h^{r_i'})^{\pi_i}$

Unforgeability

Signature: $\sigma_i = H_1(t||CT_i)^{x_i}$

• Batch Verification Security

Batch Verification:

$$e(\prod_{i=1}^{n} \sigma_i^{\delta_i}, g_1) = \prod_{i=1}^{n} e(H_1(t||CT_i)^{\delta_i}, Y_i)$$

Semantic Security

 $\mathcal{G}(\tau) \to (q_1, q_2, \mathbb{G}'_1, \mathbb{G}'_2, e')$ where $\mathbb{G}'_1, \mathbb{G}'_2$ are with order $N = q_1 q_2$

The subgroup decision problem:

- Given $\{N, \mathbb{G}'_1, \mathbb{G}'_2, e'\}$ and an element $x \in \mathbb{G}'_1$,
 - if the order of x is q_1 , output "1"
 - otherwise, output "0"

The problem is to decide if an element x is in a subgroup of \mathbb{G}'_1 without knowing the factorization of the group order N.

26

Semantic Security

 $N, \mathbb{G}'_1, \mathbb{G}'_2, e', g_0, x, H_2$

 m_0, m_1

 $C \leftarrow g_0^{m_b} H_2(t)^{\pi} x^{r\pi}$

Choose $b \in_R \{0,1\}$

Output $b' \in \{0, 1\}$

b'

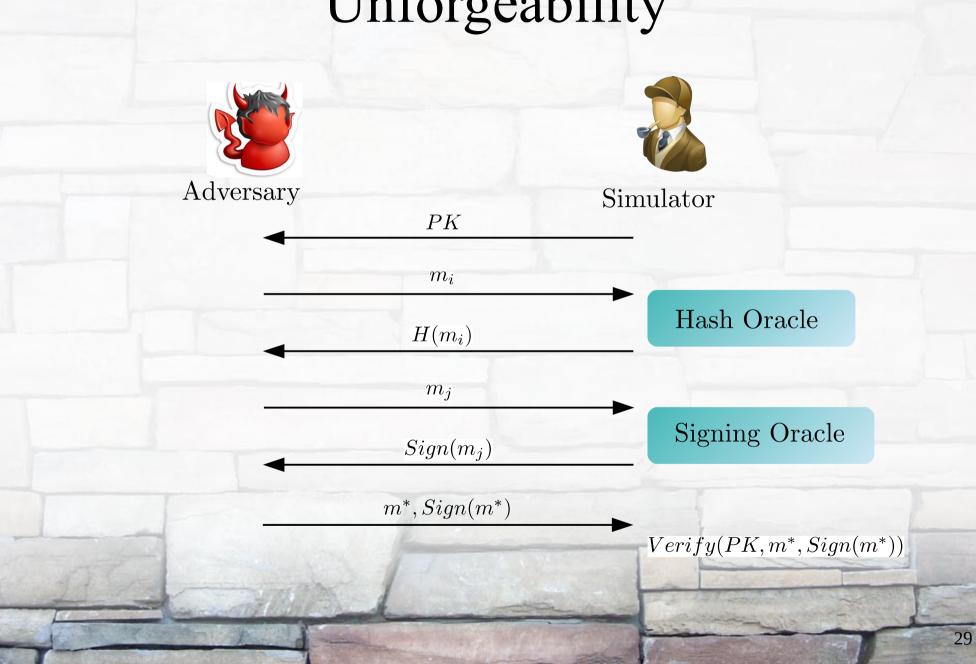
 $\Pr[b'=b] = 1/2 + \epsilon(\tau)$

Unforgeability

Consider a generator g in a multiplicative cyclic group \mathbb{G} with prime order p. We discuss two problems on \mathbb{G} :

- Decisional Diffie-Hellman Problem For $a, b, c \in \mathbb{Z}_p^*$, given (g, g^a, g^b, g^c) , determine whether c = ab
- Computational Diffie-Hellman Problem For $a, b \in \mathbb{Z}_p^*$, given (g, g^a, g^b) , compute g^{ab}

Unforgeability



Unforgeability

	PK	Hash Oracle	Signing Oracle	Challenge	Probability
Game 1	$Y \leftarrow g^a$	$h_i \leftarrow g^{r_i}$	$\sigma_i \leftarrow (g^a)^{r_i}$	$Verify(Y, M^*, \sigma_i^*)$	ϵ
Game 2	$Y \leftarrow g^a$	$h_i \leftarrow g^{r_i}$	$\sigma_i \leftarrow (g^a)^{r_i}$	$Verify(Y, M^*, \sigma_i^*) \wedge s_i^* = 1$	$\zeta\epsilon$
Game 3	$Y \leftarrow g^a$	$h_i \leftarrow g^{r_i}$	$s_i \in \{0, 1\}$ $\sigma_i \leftarrow (g^a)^{r_i}$	$Verify(Y, M^*, \sigma_i^*) \wedge s_i^* = 1$ $\wedge \text{ all of } s_i = 0$	$\zeta \epsilon \cdot (1-\zeta)^{q_s}$
Game 4	$Y \leftarrow g^a$	$h_i \leftarrow g^{r_i}$	$\sigma_i \leftarrow (g^a)^{r_i} \ s_i = 1 : \text{halt}$	$Verify(Y, M^*, \sigma_i^*) \wedge s_i^* = 1$ \$\times\$ all of $s_i = 0$	$\zeta \epsilon \cdot (1 - \zeta)^{q_s}$
Game 5	$Y \leftarrow g^a$	$s_i = 0:$ $h_i \leftarrow g^{r_i}$ $s_i = 1:$ $h_i \leftarrow g^b g^{r_i}$	$s_i = 0:$ $\sigma_i \leftarrow (g^b)^{r_i}$ $s_i = 1:$ halt	$Verify(Y, M^*, \sigma_i^*) \wedge s_i^* = 1$ $\wedge \text{ all of } s_i = 0$	$\zeta \epsilon \cdot (1 - \zeta)^{q_s}$
Game 6	$Y \leftarrow g^a$	$s_i = 0:$ $h_i \leftarrow g^{r_i}$ $s_i = 1:$ $h_i \leftarrow g^b g^{r_i}$	$s_i = 0:$ $\sigma_i \leftarrow (g^b)^{r_i}$ $s_i = 1:$ halt	$Verify(Y, M^*, \sigma_i^*) \wedge s_i^* = 1$ \wedge all of $s_i = 0$ Output $\sigma_i^*/(g^a)^{r_i^*} = g^{ab}$	$\zeta \epsilon \cdot (1 - \zeta)^{q_s}$

Batch Verification Security

- If $Verify(m_i, PK_i, \sigma_i) = 1$ for all i's in [1, n], $Batch((m_i, PK_i, \sigma_i), \text{ for } i \in [1, n]) = 1$
- If $Verify(m_i, PK_i, \sigma_i) = 0$ for some i in [1, n], $Batch((m_i, PK_i, \sigma_i), \text{ for } i \in [1, n]) = 0$

Assume that an adversary tampers with some valid signatures and let the batch verification be valid (event E) as follows:

• When $Verify(m_i, PK_i, \sigma_i) = 0$ for some i's in [1, n], $Batch((m_i, PK_i, \sigma_i),$ for $i \in [1, n]) = 1$ is with negligible probability

Conclusion

- The proposed scheme is the first one that can resist internal attackers in smart grids
- It ensures data integrity and provides secure batch verification for efficient verification
- We have also designed a tree-based aggregation variant for the wireless mesh network architecture

Future Works

- Eliminate the offline trusted third party
- Integrate the proposed scheme into the time-of-use billing system to protect user consumption information
- Apply the proposed approach to the other privacypreserving protocols in smart grids

Applied Cryptology Laboratory Department of Computer Science and Engineering National Sun Yat-sen University